INTRAMOLECULAR NITRENE INSERTION REACTIONS INTO THIOPHENE RINGS Geoffrey R. Cliff, Gurnos Jones*, and John McK. Woollard Department of Chemistry, University of Keele, Keele, Staffordshire ST5 5BG, England.

(Received in UK 11 May 1973; accepted for publication 18 May 1973)

We have shown that intramolecular insertion of an intermediate nitrene occurs readily when 2-azidodiphenylmethanes are heated at $180-200^{\circ}$ in trichlorobenzene¹⁻³. We have now extended this study to the decomposition of 2-azidobenzyl heterocyclic systems; the 2-azidobenzylthiophenes have shown new decomposition routes, which are reported here.

2-(2-Aminobenzyl)thiophene(1) was prepared from 2-(2-nitrobenzoyl)thiophene by sequential catalytic and Huang-Minlon reduction. Diazotisation and treatment with azide ion gave 2-(2-azidobenzyl)thiophene(2), which decomposed (4 hr.) in trichlorobenzene at 190° . The decomposition produced much tar; separation by a combination of acid extraction and column chromotography, followed by p.l.c., gave three major products. The first major component was thieno[3,2-b]quinoline(3), (5%) m.p. 113° ⁴. Two lH signals showed large shifts when the n.m.r. solution was treated with Eu(fod)₃ shift reagent. One signal

had J 7Hz (H5), and the other J 3.5Hz (H3). This evidence excludes the isomeric thieno-[2,3-b] quinoline structure; the thieno [3,2-b] quinoline(3) was synthesized unambigously by dehydrogenation of 2,3-dihydrothioeno[3,2-b]quinoline, m.p. 75-76°, and the two specimens were shown to be identical. The second decomposition product was the amine(1), identical with a synthetic specimen. The third decomposition produced was 1,2-dihydro-3H-pyrrolo[1,2-a]indol-3-thione,(4), (3%), m.p. 103° . The thione (4) showed absorption at δ 2.85 (2H,t,H2), 3.35 (2H,t,H1), 6.15 (1H,s,H9), 7.1 to 7.4 (3H,m), and 8.8 p.p.m. (1H,m,H5); m/e 187(100%), 154, 130; λ_{max} (EtOH) 233, 273, and 310 nm $(10g_{10} \in 4.00, 4.09, 4.00)$. A minor component, m.p. 147-149°, was identical with a sample of 1,2-dihydro-3H-pyrrolo-[1,2-a] indol-3-one,(5), supplied by Professor R.W. Franck; since oxygen was not excluded from the work-up this probably arises by oxidation of compound (4).

3-(2-Azidobenzy1)-2,5-dimethylthiophene(6) was synthesised by a route similar to that used for compound (2). Decomposition of the azide(6) gave a much cleaner reaction mixture, yielding two major products, and a number of minor components. One of the major products (15%) was 3-(2-aminobenzy1)-2,5-dimethylthiophene(7), m.p. 55° , identical with a synthetic specimen. The second major component (34%) was 2,4-dimethylthieno [3,2-c]quinoline,(8), m.p. 71.5-72.5°. The n.m.r. spectrum showed two non-equivalent methyl signals at δ 2.72 and 2.6 p.p.m. (CCl₄); the latter showed long-range coupling (J 1.5Hz) to a signal (1H) at δ 6.95 p.p.m.. Addition of Eu(fod)₃ to the n.m.r. solution caused large downfield shifts in a doublet (1H,J7Hz) and in the coupled methyl group. The identification of a minor component as 2-methyl-3-<u>n</u>-propylquinoline⁵, (9), (3%), narrowed the possibilities to two. The structure (8) was confirmed by synthesis; 2,3-dihydro-2,4-dimethylthieno[3,2-c]quinoline⁶ was dehydrogenated using Pd/C at 310-320°.

Both these reactions show interesting departures from previous nitrene insertion pathways. From the 2-substituted thiophene(2) the thieno[3,2-b]-quinoline(3) can arise either via an aziridine intermediate(10) or a spirodiene(11), in the latter case by migration of the anionic nitrogen-SCHEME A. The expected product is the dihydrothienoquinoline(12) but the presence of the amine(1) indicates the possibility of dehydrogenation by nitrene/hydrogen abstraction. The more interesting product is the pyrroloindolothione(4) which probably arises by opening of the thiophene ring with subsequent re-cyclisation. A possible route is shown in Scheme A.

```
SCHEME A
```


In the case of the 3-substituted thiophene either the aziridine(13) or the spiro compound(14) can re-arrange as shown (SCHEME B) but the sp^3 carbon between nitrogen and sulphur prevents aromatisation. Loss of a proton from intermediate(15) can be followed by a 1,3-sulphur shift to give a dihydrothienoquinoline; again the presence of a considerable amount of amine(7) indicates the mode of dehydrogenation to give compound(8).

We thank the Harrison Memorial Fund for support (G.R.C.) and Dr. D. Bishop for helpful discussion.

REFERENCES AND NOTES

- 1. G.R. Cliff and G. Jones, Chem. Commun., 1970, 1705.
- 2. G.R. Cliff, E.W. Collington, and G. Jones, J. Chem. Soc. (c), 1970, 1490
- 3. G.R. Cliff and G. Jones, <u>J. Chem. Soc</u>.(C), 1971, 3418
- 4. All new compounds gave satisfactory micro-analyses.
- 5. Y. Makisumi, <u>J. Org. Chem</u>., 1965; <u>30</u>, 1989
- Y. Makisumi, <u>Japan.pat</u>. 69, 04987 (<u>Chem. Abs.</u>, 1969, <u>71</u>, 3374)